Singular Value Inequalities for Compact Operators

نویسندگان

  • WASIM AUDEH
  • FUAD KITTANEH
چکیده

A singular value inequality due to Bhatia and Kittaneh says that if A and B are compact operators on a complex separable Hilbert space such that A is self-adjoint, B 0, and A B; then sj(A) sj(B B) for j = 1; 2; :::We give an equivalent inequality, which states that if A;B; and C are compact operators such that A B B C 0; then sj(B) sj(A C) for j = 1; 2; :::Moreover, we give a sharper inequality and we prove that this inequality is equivalent to three equivalent inequalities considered by Tao. In particular, we show that if A and B are compact operators such that A is self-adjoint, B 0, and A B; then 2sj(A) sj((B +A) (B A)) for j = 1; 2; ::: Some applications of these results will be given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Singular Value and Arithmetic-geometric Mean Inequalities for Operators

A singular value inequality for sums and products of Hilbert space operators is given. This inequality generalizes several recent singular value inequalities, and includes that if A, B, and X are positive operators on a complex Hilbert space H, then sj ( A 1/2 XB 1/2 ) ≤ 1 2 ‖X‖ sj (A+B) , j = 1, 2, · · · , which is equivalent to sj ( A 1/2 XA 1/2 −B 1/2 XB 1/2 ) ≤ ‖X‖ sj (A⊕B) , j = 1, 2, · · ...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander’s condition

In this paper we establish weighted norm inequalities for singular integral operators with kernel satisfying a variant of the classical Hörmander’s condition.

متن کامل

Singular value inequalities for commutators of Hilbert space operators

Article history: Received 25 July 2008 Accepted 16 December 2008 Available online 30 January 2009 Submitted by R.A. Brualdi AMS classification: 47A30 47A63 47B10 47B15 47B47

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012